



# 1 The influence of instrumental line shape degradation on

## 2 NDACC gas retrievals

3 Youwen Sun<sup>1, 3)†</sup>, Mathias Palm<sup>2)†</sup>, Cheng Liu<sup>3, 4, 1)\*</sup>, Frank Hase<sup>5)</sup>, David Griffith<sup>6)</sup>,  
4 Christine Weinzierl<sup>2)</sup>, Christof Petri<sup>2)</sup>, Wei Wang<sup>1)</sup>, and Justus Notholt<sup>2)</sup>

5 (1 Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics  
6 and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China)

7 (2 University of Bremen, Institute of Environmental Physics, P. O. Box 330440, 28334  
8 Bremen, Germany)

9 (3 Center for Excellence in Urban Atmospheric Environment, Institute of Urban  
10 Environment, Chinese Academy of Sciences, Xiamen 361021, China)

11 (4 University of Science and Technology of China, Hefei, 230026, China)

12 (5 Karlsruhe Institute of Technology (KIT), Institute for Meteorology and Climate

13 *Research (IMK-ASF), Karlsruhe, Germany)*

14 (6 School of Chemistry, University of Wollongong)

+These two authors contributed equally to this work

## 17 Abstract:

18 Instru

19 global FTIR (Fourier transform infrared) networks if not properly treated. Currently,  
20 how ILS degradation influences the global NDACC (Network for Detection of  
21 Atmospheric Composition Change) gases retrieval and how much ILS deviation is  
22 acceptable for each NDACC gas are still not fully quantified. We simulated ILS  
23 degradations with respect to typical types of misalignment, and compared their  
24 influence on each NDACC gas. The sensitivities of total column, root mean square of  
25 fitting residual (RMS), total random uncertainty, total systematic uncertainty, total  
26 uncertainty, degrees of freedom for signal (DOFs), and profile with respect to  
27 different levels of ILS degradation for all current NDACC gases, i.e., O<sub>3</sub>, HNO<sub>3</sub>, HCl,  
28 HF, ClONO<sub>2</sub>, CH<sub>4</sub>, CO, N<sub>2</sub>O, C<sub>2</sub>H<sub>6</sub>, and HCN, were investigated. The influence of an  
29 imperfect ILS on NDACC gases retrieval were assessed, and the consistency under  
30 different meteorological conditions and solar zenith angles (SZA) were examined.



31 The study concluded that the influence of ILS degradation can be approximated by the  
32 linear sum of individual modulation efficiency (ME) amplitude influence and phase  
33 error (PE) influence. The PE influence is of secondary importance compared with the  
34 ME amplitude influence. For total column retrieval, the stratospheric gases are more  
35 sensitive to ILS degradation than the tropospheric gases. For profile retrieval, the  
36 positive ME has more influence on tropospheric gases than the stratospheric gases. In  
37 contrast, the negative ME has more influence on stratospheric gases than the  
38 tropospheric gases. In order to suppress the influence on total column for ClONO<sub>2</sub> and  
39 other NDACC gases within 10% and 1%, respectively, the permitted maximum ILS  
40 degradation for each NDACC gas was deduced (summarized in Table 5).

41

42 **Key words:** NDACC, FTIR, Instrumental line shape, Profile retrieval

43 **1 Introduction**

44 In order to achieve consistent results between different FTIR (Fourier transform  
45 infrared) sites, the TCCON (Total Carbon Column Observing Network,  
46 <http://www.tccon.caltech.edu/>) and NDACC (Network for Detection of Atmospheric  
47 Composition Change, <http://www.ndacc.org/>) have developed strict data acquisition  
48 and retrieval methods to minimize site to site differences (Hase et al., 2012; Wunch et  
49 al., 2010 and 2011; Washenfelder, 2006; Messerschmidt et al., 2010; Kurylo, 1991;  
50 Davis et al., 2001; Schneider, et al., 2008; Kohlhepp et al., 2011; Hannigan et al., 2009;  
51 Vigouroux et al., 2008 and 2015). Interferograms are acquired with similar  
52 instruments operated with common detectors, acquisition electronics and/or optical  
53 filters. These interferograms are first converted to spectra and then these spectra are  
54 analyzed using dedicated processing algorithms, i.e., GFIT, PROFFIT or SFIT  
55 (Wunch et al., 2010 and 2015; Hase et al., 2006; Hannigan and Coffey, 2009).  
56 Typically, the TCCON network only uses the Bruker 125HR instruments  
57 (<http://www.tccon.caltech.edu/>; <https://www.bruker.com/>) with specified settings  
58 (entrance aperture, amplification of the detected signal). In the NDACC network,  
59 other instruments are used as well, e.g., the Bruker M series, a BOMEM DA8 in



60 Toronto, Canada and a self-built spectrometer in Pasadena, USA  
61 (<http://www.ndacc.org/>; <https://www.bruker.com/>). FTIR spectrometers are highly  
62 precise and stable measurement devices and the instrumental line shapes (ILSs) not  
63 far from the theoretical limit if carefully aligned. However, their alignment can  
64 change abruptly as a consequence of operator intervention or drift slowly due to  
65 mechanical degradation over time (Olsen et al., 2004; Duchatelet et al., 2010; Hase et  
66 al., 2012; Feist et al., 2016). Moreover, the NDACC observation may change the  
67 entrance field stop size if incident radiation changes. This practice may introduce a  
68 dependency of the instrument alignment status on the optical settings because the  
69 mechanical errors between different field stops may be non-negligible and  
70 inconsistent (Sun et al., 2017). Biases between sites would arise if all these  
71 misalignments are not properly characterized.

72 The TCCON network assumes an ideal ILS in spectra retrieval, and the maximum  
73 ILS degradation is prescribed as 5% for the modulation efficiency (ME) amplitude  
74 (Wunch et al., 2011 and 2015). This assumption still holds within the required  
75 accuracy of the results. In the NDACC gases retrieval, the ILS can be assumed as  
76 ideal if spectrometer is well aligned, or if misalignment exists, described by LINEFIT  
77 results derived from dedicated cell measurements or retrieved together with the gas  
78 profile from an atmospheric spectrum using a polynomial (Vigouroux et al., 2008 and  
79 Vigouroux et al., 2015). How these ILS treatments influence the NDACC gases  
80 retrieval and how much ILS deviation from unity is acceptable for each NDACC gas  
81 if an ideal line shape is assumed are still not fully quantified, and it may be better to  
82 assume an ideal ILS. The practice of co-retrieving ILS parameters from atmospheric  
83 spectra without dedicated cell measurements is not to be recommended because the  
84 observed shapes of spectral lines are exploited primarily for inferring the vertical  
85 distribution of the trace gases, the ILS and the trace gas profiles have similar effects  
86 on the line shape, i.e., changing the shape and width of the line. Overlapping lines, i.e.,  
87 due to interfering gases may introduce an asymmetry in the absorption lines which  
88 may be undistinguishable from an ILS phase deviation.

89 This paper investigates the influence of ILS degradation on NDACC gas



90 retrievals and deduces the maximum ILS deviations allowable for suppressing the  
91 influence within a specified acceptable ranges.

## 92 **2 Characteristics of ideal and imperfect ILSs**

93 The ILS is the Fourier transform of the weighting applied to the interferogram.  
94 This weighting consists of two parts: an artificially applied part to change the  
95 calculated spectrum and an unavoidable part which is due to the fact that the  
96 interferogram is finite in length (box car function), the divergence of the beam is  
97 non-zero (due to the non-zero entrance aperture), and several other effects which are  
98 due to misalignment (Davis et al., 2001, chapter 9). The ILS consisting of only the  
99 unavoidable parts of the line shape is called the ideal line shape.

100 The theoretical ideal ILS as defined in equation (3), when the instrument is well  
101 aligned, is a convolution of sinc and rectangular functions (defined in equations (1)  
102 and (2)), representing the finite length of the interferogram and the finite circular field  
103 of view (FOV) of the spectrometer (Davis et al., 2001).

$$104 \quad SINC(\sigma, L) = 2L \frac{\sin(2\pi\sigma L)}{2\pi\sigma L} \quad (1)$$

$$105 \quad RECT(\sigma, \sigma_0, \theta) = \begin{cases} \frac{2}{\sigma_0 \theta^2} & \text{if } -0.5\sigma_0 \theta^2 \leq \sigma \leq 0 \\ 0 & \text{otherwise} \end{cases} \quad (2)$$

$$106 \quad ILS(\sigma, \sigma_0, L, \theta) = SINC(\sigma, L) * RECT(\sigma, \sigma_0, \theta) \quad (3)$$

107 where  $\sigma$  is the wavenumber,  $\sigma_0$  is the central wavenumber,  $L$  is the optical path  
108 difference (OPD) and  $\theta$  is the angular radius of the circular internal FOV of the  
109 spectrometer. For standard NDACC measuring conditions,  $L \geq 180$  cm and  $\theta$  defined  
110 by the entrance field stop size in the light path.

111 The LINEFIT software calculates the deviation of the measured ILS from the  
112 ideal ILS (Hase et al., 2001 and 2012). It retrieves a complex ME as a function of  
113 OPD, which is represented by a ME amplitude and a phase error (PE) (Hase et al.,  
114 1999). The ME amplitude is connected to the width of the ILS while the PE quantifies  
115 the degree of ILS asymmetry. For a perfectly aligned spectrometer, it would meet the



116 ideal nominal ILS characteristics if smear and vignetting effects were neglected, and  
117 thus have an ME amplitude of unity and a PE of zero along the whole interferogram.  
118 However, if a FTIR spectrometer is subject to misalignment, the ME amplitude would  
119 deviate from unity and the PE deviate from zero (Hase et al., 2012). This results in an  
120 imperfect ILS.

### 121 **3 Simulation of ILS degradation**

122 We use the program ALIGN60 to simulate ILS degradation in a high resolution  
123 FTIR spectrometer typically used in the NDACC network. As a part of LINEFIT,  
124 ALIGN60 is a package for simulation of the ILS of misaligned cube-corner  
125 interferometers. It generates trustworthy results with respect to all types of  
126 misalignment (Hase et al., 1999). In this simulation, the entrance beam section was  
127 assumed to be circular with a diameter of 8.0 cm. The ILS was only calculated from  
128 positive side of interferogram. The smear and vignetting effects were not taken into  
129 account. The misalignment of a FTIR spectrometer can be expressed via two  
130 perpendicular axes perpendicular to the beam direction. For a circular entrance beam,  
131 the same misalignment in either direction results in a similar ILS. Thus, this work  
132 only considers misalignment in one axis.

133 The misalignments as inputs of ALIGN60 are listed in Table 1 and the resulting  
134 ILSs are shown in Fig. 1. All types of misalignment cause nonlinear ME deviations  
135 except decentering of measuring laser (*c*) and the constant shear (*d*) which mainly  
136 affect PE and result in linear PE deviation. Two types of ILS degradation are evident,  
137 one is referred to as positive ME and has a ME amplitude of larger than unity. The  
138 other one is referred to as negative ME and has a ME amplitude of less than unity.  
139 Typically, the increasing misalignment (*b*, *f*, *h* or *i*) causes negative ME amplitude and  
140 the decreasing misalignment (*e*, *g* or *j*) causes positive ME amplitude. For the same  
141 misalignment amplitude, the decreasing misalignment causes more ME deviation than  
142 the increasing misalignment. Regardless of positive or negative ME, the ME deviation  
143 shape depends on misalignment type and the same misalignment amplitude causes the  
144 same deviation in ME amplitude. The decentering of the entrance filed stop is



145 equivalent to the linear increasing misalignment.

## 146 **4 NDACC gases retrieval**

### 147 **4.1 Retrieval strategy**

148 The influence of ILS degradation on all current NDACC gases, i.e., O<sub>3</sub>, HNO<sub>3</sub>, HCl,  
149 HF, ClONO<sub>2</sub>, CH<sub>4</sub>, CO, N<sub>2</sub>O, C<sub>2</sub>H<sub>6</sub>, and HCN, is investigated here. Typical  
150 atmospheric vertical profiles of these gases are shown in Fig.2. There are five  
151 stratospheric gases and five tropospheric gases. The retrieval settings as recommended  
152 by the NDACC for all these gases are listed in Table 2. The latest version of profile  
153 retrieval algorithm SFIT4 v 0.9.4.4 is used (<http://www.ndacc.org/>). The basic  
154 principle of SFIT4 is using an optimal estimation technique for fitting  
155 calculated-to-observed spectra (Rodgers, 2000; Hannigan and Coffey, 2009). All  
156 spectroscopic line parameters are adopted from HITRAN 2008 (Rothman et al., 2009)  
157 in this study. This might not be ideal, but we keep it to achieve consistent results. A  
158 priori profiles of pressure, temperature and water vapor for the measurement days are  
159 interpolated from the National Centers for Environmental Protection and National  
160 Center for Atmospheric Research (NCEP/NCAR) reanalysis (Kalnay et al., 1996). A  
161 priori profiles of the target gases and the interfering gases except H<sub>2</sub>O use the  
162 WACCM4 (Whole Atmosphere Community Climate Model) model data. We follow  
163 the NDACC standard convention with respect to micro windows (MWs) selection and  
164 the interfering gases consideration (<https://www2.acom.ucar.edu/irwg/links>). No  
165 de-weighting signal to noise ratios (SNR) are used except for CO and HCl which  
166 utilize a de-weighting SNR of 500 and 300, respectively.

167 The selection of the regularization (a priori covariance matrix  $\mathbf{S}_a$  and SNR) cannot  
168 be easily standardised because it depends on the real variability for each gas. In  
169 optimal estimation, the selection of  $\mathbf{S}_a$  is very important in the inversion process and,  
170 together with the measurement noise error covariance matrix  $\mathbf{S}_e$ , will lead to the  
171 following averaging kernel matrix  $\mathbf{A}$  (Rodgers, 2000):

$$172 \quad \mathbf{A} = \mathbf{G}_y \mathbf{K}_x = (\mathbf{K}_x^T \mathbf{S}_e^{-1} \mathbf{K}_x^T + \mathbf{S}_a^{-1})^{-1} \mathbf{K}_x^T \mathbf{S}_e^{-1} \mathbf{K}_x \quad (4)$$

173 where  $\mathbf{G}_y$  is the sensitivity of the retrieval to the measurement.  $\mathbf{K}_x$  is weighting  
174 function matrix or Jacobian matrix that links the measurement vector  $\mathbf{y}$  to the state  
175 vector  $\mathbf{x}$  :  $\Delta\mathbf{y} = \mathbf{K}_x \Delta\mathbf{x}$ .  $\mathbf{A}$  characterizes the vertical information contained in the FTIR  
176 retrievals. In this study, we assume  $\mathbf{S}_e$  to be diagonal and its diagonal elements are the



177 inverse square of the SNR. The vertical information content of the retrieved target gas  
178 profile can be quantified by the number of degrees of freedom for signal (DOFs),  
179 which is the trace of  $\mathbf{A}$ , defined in Rodgers (2000) by:

180 
$$d_s = \text{tr}(\mathbf{A}) = \text{tr}((\mathbf{K}_x^T \mathbf{S}_e^{-1} \mathbf{K}_x^T + \mathbf{S}_a^{-1})^{-1} \mathbf{K}_x^T \mathbf{S}_e^{-1} \mathbf{K}_x^T) \quad (5)$$

181 The diagonal elements of  $\mathbf{S}_a$  represent the assumed variability of the target gas  
182 volume mixing ratio (VMR) at a given altitude, and the off diagonal elements  
183 represent the correlation between the VMR at different altitudes. We can see in Table  
184 3 that, except CO and HCN, the target gases are using an a priori covariance matrix  
185 with diagonal elements constant with altitude corresponding to 10, 20, 50 or 100 %  
186 variability; the largest variabilities are for  $\text{HNO}_3$ ,  $\text{HCl}$  and  $\text{ClONO}_2$ . For CO, the  
187 diagonal elements of  $\mathbf{S}_a$  correspond to 27% from ground to 34 km and decrease down  
188 to 11% at the top of atmosphere. For HCN, the diagonal elements of  $\mathbf{S}_a$  correspond to  
189 79% from ground to 5 km and decrease down to 21% at the top of atmosphere. No  
190 correlation of off diagonal matrix elements is used in all retrievals except for  $\text{ClONO}_2$   
191 which uses exponential correlation with a HWHM (half width at half-maximum) of 8  
192 km. The SNR values for all retrievals are the real values taken from each individual  
193 spectrum. The ILSs for all retrievals are using the simulations in section 3.

#### 194 4.2 Averaging kernels

195 Beside the a priori covariance matrix  $\mathbf{S}_a$  and  $\mathbf{S}_e$ , the averaging kernel matrix  $\mathbf{A}$   
196 also depends on retrieval parameters including solar zenith angle (SZA), the spectral  
197 resolution, and the choice of spectral micro windows (MW). The rows of  $\mathbf{A}$  are the so  
198 called averaging kernels and they represent the sensitivity of the retrieved profile to  
199 the real profile. Their FWHM is a measure of the vertical resolution of the retrieval at  
200 a given altitude. The area of averaging kernels represents sensitivity of the retrievals  
201 to the measurement. This sensitivity at altitude  $k$  is calculated as the sum of the  
202 elements of the corresponding averaging kernels,  $\sum_i \mathbf{A}_{ki}$ . It indicates the fraction of  
203 the retrieval at each altitude that comes from the measurement rather than from the a  
204 priori information (Rodgers, 2000). A value close to zero at a certain altitude indicates  
205 that the retrieved profile at that altitude is nearly independent of measurement and is  
206 therefore approaching the a priori profile.

207 The averaging kernel matrices of these ten NDACC gases are shown in Fig. 3.  
208 Fig. 4 is the corresponding averaging kernels and their areas. The altitude ranges with



209 sensitivity larger than 0.5 and the corresponding DOFs are summarized in Table 3.  
210 These sensitive ranges indicate that the retrieved profile information comes by more  
211 than 50% from measurement, or, in other words, that the a priori information  
212 influences the retrieval by less than 50%. Each gas has different sensitive range. The  
213 sensitive range for HCN, CO and C<sub>2</sub>H<sub>6</sub> is mainly tropospheric, and for ClONO<sub>2</sub>, HCl  
214 and HF is mainly stratospheric. O<sub>3</sub>, CH<sub>4</sub> and N<sub>2</sub>O have high retrieval sensitivity in  
215 both troposphere and stratosphere. The HNO<sub>3</sub> has high retrieval sensitivity in  
216 stratosphere and in atmospheric boundary layer below 1.5 km.

### 217 **4.3 Error analysis**

218 As listed in Table 2, we classified errors as systematic or random according to  
219 whether they are constant between consecutive measurements, or vary randomly. For  
220 comparison, the error items considered in error analysis are the same for the retrieval  
221 of all gases. The smoothing error  $\mathbf{E}_s$  is calculated via equation (6), the measurement  
222 error  $\mathbf{E}_m$  is calculated via equation (7), and all other error items  $\mathbf{E}_{var}$  are calculated via  
223 equation (8) (Rodgers, 2000).

$$224 \quad \mathbf{E}_s = (\mathbf{A} - \mathbf{I})\mathbf{S}_s(\mathbf{A} - \mathbf{I})^T \quad (6)$$

$$225 \quad \mathbf{E}_m = \mathbf{G}_y \mathbf{S}_s \mathbf{G}_y^T \quad (7)$$

$$226 \quad \mathbf{E}_{var} = \mathbf{G}_y \mathbf{K}_{var} \mathbf{S}_{var} \mathbf{K}_{var}^T \mathbf{G}_y^T \quad (8)$$

227 where  $\mathbf{S}_{var}$  is the error covariance matrix of *var*.  $\mathbf{K}_{var}$  is weighting function matrix of  
228 *var*. Here *var* refers to one of the error items in Table 2 except smoothing error and  
229 measurement error. In this study, the a priori error covariances for all non-retrieval  
230 parameters are set the same for all gases retrieval.

231 Figs.5 and 6 show the error components contributing to the systematic error and  
232 random error covariance matrices of all NDACC gases, as well as the combined errors.  
233 The structure in the error profiles shape reflects the effect of the propagation of  
234 different errors in the retrieval process. The dominant sources of systematic errors and  
235 random errors for all gases are listed in Table 4. For most gases, the dominant sources  
236 of systematic errors are smoothing error, line intensity error and line pressure  
237 broadening error. The dominant sources of random errors are measurement error and  
238 zero level.

### 239 **5 ILS influence study**



240 This section presents the ILS influence study, whereby the degraded ILSs that  
241 simulated by ALIGN60 are used in the SFIT forward model, and the fractional  
242 difference (D%) in various quantities for each gas relative to the retrieval with an  
243 ideal ILS are computed. For each gas, this section only selects one typical spectrum  
244 for study. The consistency of the resulting deduction will be evaluated in section 6. All  
245 spectra were recorded on a clear day at Hefei on February 16, 2017. For all spectra  
246 used in this study, the actual ILS degradation of the FTIR spectrometer is less than  
247 1.3% and can be regarded as ideal. We have taken the retrievals with an ideal ILS as  
248 the reference. The fractional difference is defined here as,

249 
$$D\% = \frac{X - X_{ref}}{X_{ref}} \times 100 \quad (11)$$

250 where  $X$  is a vector which can include multiple elements such as gas profile or only  
251 one element such as DOFs, root mean square of fitting residual (RMS), total column,  
252 total random uncertainty, total systematic uncertainty, or total uncertainty. The total  
253 random uncertainty and systematic uncertainty are the sum in quadrature of each  
254 individual uncertainty listed in Table 2, and the total uncertainty is the sum in  
255 quadrature of total random uncertainty and total systematic uncertainty.  $X_{ref}$  is the  
256 same as  $X$  but for the nominal ideal ILS. For all gases, the retrievals with all levels of  
257 ILS degradation fulfill the following filter criteria:

258 1) The RMSs of the residual (difference between measured and calculated spectra  
259 after the fit) in all fitting windows has to be less than 3%.

260 2) The retrievals should converge for all levels of ILS degradation.

261 3) The concentrations of the target and interfering gases at each sub layer should be  
262 positive.

263 4) The solar intensity variation (SIV) should be less than 10%. The SIV within the  
264 duration of a spectrum is the ratio of the standard deviation to the average of the  
265 measured solar intensities.

266 **5.1 ME amplitude and PE influence**

267 In order to determine how the ILS degradation affects the NDACC gas retrievals,



268 the results deduced from ILS considering both ME amplitude and PE are compared to  
269 those only considering ME amplitude or PE. All types of ILS degradation in section 3  
270 are used in this study. Fig.7 exemplifies the case of ILS *j*, where the differences in  
271 total column, RMS, random uncertainty, systematic uncertainty, total uncertainty, and  
272 DOFs for each gas relative to the retrieval with an ideal ILS are compared. Fig.8  
273 shows the fractional difference in profile of each gas for ILS *j*. The results show that  
274 the influence of ILS degradation on the total column, RMS, random uncertainty,  
275 systematic uncertainty, total uncertainty, DOFs, and profile can be approximated by  
276 the linear sum of individual ME amplitude influence and PE influence. The PE  
277 influence is of secondary importance compared with the ME amplitude influence. The  
278 comparisons for the results retrieved with ILS *a* to *i* come to the same conclusions.

279 Figs.9 and 10 show the influence of ILS *a* to *j* on total column and profile of all  
280 NDACC gases. The resulting influence amounts depend on deviation amount and  
281 deviation shape of ME. For positive MEs, in most cases, the ILS *j* causes the  
282 maximum influence, and for negative MEs, the ILS *i* causes the maximum influence.  
283 In a real instrument, the misalignment is a combination of misalignment *a* to *j*. In  
284 principle, it should not cause influence exceeding misalignment *i* or *j* for the same  
285 misalignment amplitude. In the following, misalignment *i* and *j* are selected on behalf  
286 of negative and positive ME respectively to investigate how the ILS degradation  
287 influence the NDACC gas retrievals.

## 288 **5.2 Sensitivity study**

289 We simulated seven levels of negative ME *i* and positive ME *j* with ALIGN60,  
290 and incorporated them in the SFIT forward model, and then calculated the fractional  
291 difference in various quantities for each gas relative to the retrieval with an ideal ILS.  
292 The misalignments as inputs of ALIGN60 and the resulting ILSs are shown in Figs.  
293 11 and 13. The corresponding Haidinger fringes at the maximum misalignment  
294 position are shown in Figs. 12 and 14. The ME deviation, decenter of Haidinger  
295 fringes and ILS deterioration varying over misalignment are evident. Fig.15 is the  
296 sensitivity of total column with respect to different levels of ILS degradation. Figs. 16



297 ~ 19 are the same as Fig. 15 but for DOFs, RMS, uncertainty and profile. The results  
298 show that the ILS degradation affected total column, RMS, DOFs, retrieval  
299 uncertainty, and profile. Generally, the larger the ME deviation, the larger the  
300 influence. The positive and negative ME have opposite influence on total column,  
301 DOFs, total uncertainty and profile.

302 With respect to total column, the influence of ILS degradation on stratospheric  
303 gases is larger than the tropospheric gases. For O<sub>3</sub> and HNO<sub>3</sub>, positive ME causes an  
304 overestimated total column and negative ME causes an underestimated total column.  
305 For other gases, negative ME causes an overestimated total column and positive ME  
306 causes an underestimated total column. For all gases except O<sub>3</sub> and CH<sub>4</sub>, the positive  
307 ME influence is larger than the negative ME influence. For O<sub>3</sub> and CH<sub>4</sub>, the negative  
308 ME influence is larger than the positive ME influence.

309 For all gases, positive ME increases the DOFs and negative ME decreases DOFs.  
310 For all gases except HF and CH<sub>4</sub>, both positive ME and negative ME increase RMS.  
311 For HF, positive ME increases RMS while negative ME decreases RMS. For CH<sub>4</sub>,  
312 positive ME decreases RMS and negative ME increases RMS.

313 The influence on systematic uncertainty and random uncertainty depends on ME  
314 deviation type and gas type. The influence on total uncertainty is the combination of  
315 the influence on total systematic uncertainty and total random uncertainty. For all  
316 gases except O<sub>3</sub>, positive ME decreases total uncertainty and negative ME increases  
317 total uncertainty. For O<sub>3</sub>, positive ME increases total uncertainty and negative ME  
318 decreases total uncertainty.

319 The ILS degradation causes an evident difference in profile within the altitude  
320 ranges that show high retrieval sensitivity in Fig.4. Positive ME has more influence on  
321 tropospheric gas than negative ME. Whereas, negative ME has more influence on  
322 stratospheric gas than positive ME.

### 323 **5.3 Discussion and analysis**

324 For each gas, the *a priori* covariance matrices of  $\mathbf{S}_a$ ,  $\mathbf{S}_e$ , and  $\mathbf{S}_{var}$  are the same in  
325 the aforementioned study. According to equations 6 ~ 8, we conclude that the ILS



326 degradation altered the weighting function matrix  $\mathbf{K}_x$  and eventually altered the  
327 quantities such as the total column, RMS, random uncertainty, systematic uncertainty,  
328 total uncertainty, DOFs, and profile. The change of  $\mathbf{K}_x$  is attributed to the fact that the  
329 ILS degradation alters gas absorption line shape and hence alters the structure of  
330 calculated spectra, and aggravates the mismatch between the calculated spectra and  
331 the measured spectra.

332 The stratospheric gases are more sensitive to ILS degradation than the  
333 tropospheric gases, and the ClONO<sub>2</sub> exhibits the largest sensitivity. This is because  
334 the absorption structure in stratosphere is narrower than that in troposphere, and is  
335 more easily affected by ILS degradation. We set the acceptable fractional difference in  
336 total column for ClONO<sub>2</sub> and other NDACC gases as 10% and 1%, respectively.  
337 Considering the excessively large of 28% ME deviation seldom occurred within  
338 NDACC network because of the regular alignment at each site, the permitted  
339 maximum ILS degradation for each gas is deduced in Table 5.

340 **6 Consistency evaluation**

341 For each gas, section 5 only selects one spectrum for study. This section uses all  
342 spectra recorded at Hefei from September 2014 to April 2017 to evaluate the  
343 consistency of above study. These spectra span a large difference in atmospheric water  
344 vapor, SZAs, surface pressures, surface temperatures, wind speeds, and wind  
345 directions (Fig. 20). All retrievals fulfill the above filter criteria are included in this  
346 study. A simulated ILS  $j$  with maximum ME amplitude deviation of 5% is used in the  
347 retrieval. The results are compared to the retrievals deduced from an ideal ILS. The  
348 Hefei site has run NDACC observations with the Bruker 125HR FTS for more than  
349 two years. We regularly use a low-pressure HBr cell to diagnose the misalignment of  
350 the spectrometer and to realign the instrument when indicated. For all spectra used in  
351 this study, the ILS can be regarded as ideal and thus the retrievals with ideal ILS can  
352 be taken as the reference.

353 Figs. 21 ~ 26 present the fractional difference in total column, RMS, total  
354 uncertainty, and DOFs under different humidity, pressure, SZA, temperature, wind



355 direction, and wind speed. The results show that the fractional difference in total  
356 column and total uncertainty for all gases are consistent under different  
357 meteorological conditions and SZAs. The fractional difference in DOFs for all gases  
358 except N<sub>2</sub>O and HCN are also consistent. For N<sub>2</sub>O and HCN, the variation of  
359 fractional difference in DOFs is larger than that of total column and total uncertainty.  
360 But most of them are less than 10% and independent of meteorological conditions and  
361 SZAs. For most gases, the fractional difference in RMS exhibits more scatters than  
362 the total column, total uncertainty, and DOFs. However, they are also independent of  
363 meteorological conditions and SZAs, and most of them are less than 10%. In general,  
364 the influence of ILS degradation on NDACC gases retrieval shows good consistency  
365 under different meteorological conditions and SZAs.

## 366 **6 Conclusion**

367 We assessed the influence of instrumental line shape degradation on all current  
368 NDACC gases retrieval via investigation of sensitivities of total column, root mean  
369 square of fitting residual, total random uncertainty, total systematic uncertainty, total  
370 uncertainty, degrees of freedom, and profile with respect to modulation efficiency  
371 deviations. The study concluded that the influence of instrumental line shape  
372 degradation can be approximated by the linear sum of individual modulation  
373 efficiency amplitude influence and phase error influence. The phase error influence is  
374 of secondary importance compared with the modulation efficiency amplitude  
375 influence. The influence amounts depend on deviation amount and deviation shape of  
376 the modulation efficiency.

377 For total column retrieval, the stratospheric gases are more sensitive to  
378 instrumental line shape degradation than the tropospheric gases. For profile retrieval,  
379 the positive modulation efficiency has more influence on tropospheric gases than the  
380 stratospheric gases. While the negative modulation efficiency has more influence on  
381 stratospheric gases than the tropospheric gases. The influence of instrumental line  
382 shape degradation on NDACC gas retrievals shows good consistency under different  
383 meteorological conditions and solar zenith angle. Finally, as summarized in Table 5,



384 we deduced maximum instrumental line shape deviations allowable for suppressing  
385 the influence within a specified acceptable ranges.

386 **7 Acknowledgements**

387 This work is jointly supported by the National High Technology Research and  
388 Development Program of China (No. 2016YFC0200800, 2016YFC0203302), the  
389 National Science Foundation of China (No. 41605018, No. 41405134, No.41775025,  
390 No. 41575021, No. 51778596, No. 91544212, No. 41722501), Anhui Province  
391 Natural Science Foundation of China (No. 1608085MD79), and the German Federal  
392 Ministry of Education and Research (BMBF) (Grant No. 01LG1214A). The  
393 processing environment of SFIT4 and some plot programs are provided by National  
394 Center for Atmospheric Research (NCAR), Boulder, Colorado, USA. The NDACC  
395 networks are acknowledged for supplying the SFIT software and advice.

396 **8 References**

397 Davis, S. P., Abrams, M. C., and Brault, J. W.: Fourier transform spectrometry,  
398 Academic Press, ISBN: 0-12-042510-6, 2001.

399 Duchatelet P., Demoulin P., Hase F., Ruhnke R., Feng W., Chipperfield M. P., Bernath  
400 P. F., Boone C. D., Walker K. A., and Mahieu E.: Hydrogen fluoride total and  
401 partial column time series above the Jungfraujoch from long term FTIR  
402 measurements: Impact of the line shape model, characterization of the error  
403 budget and seasonal cycle, and comparison with satellite and model data, J.  
404 Geophys. Res., 115, D22306, doi:10.1029/2010JD014677, 2010.

405 Feist D. G., Arnold S. G., Hase F., and Ponge D.: Rugged optical mirrors for Fourier  
406 transform spectrometers operated in harsh environments, Atmos. Meas. Tech., 9,  
407 2381–2391, [www.atmos-meas-tech.net/9/2381/2016/](http://www.atmos-meas-tech.net/9/2381/2016/) doi:10.5194/amt  
408 -9-2381-2016, 2016.

409 Hannigan, J. and Coffey, M.: semiautonomous FTS observation system for remote  
410 sensing of stratospheric and tropospheric gases, Journal of Atmospheric and  
411 Oceanic Technology . 09/2009; 26(9). DOI: 10.1175/2009JTECHA1230.1

412 Hase, F., Demoulin, P., Sauval, A., Toon, G. C., Bernath, P., Goldman, A., Hannigan, J.,



413 Rinsland C.: An empirical line-by-line model for the infrared solar  
414 transmittance spectrum from 700 to 5000 cm<sup>-1</sup>, *J. Quant. Spectrosc. Radiat.*  
415 Transfer, 2006, 102, 450 - 463.

416 Hase, F.: Improved instrumental line shape monitoring for the ground-based,  
417 high-resolution FTIR spectrometers of the Network for the Detection of  
418 Atmospheric Composition Change, *Atmos. Meas. Tech.*, 5, 603–610,  
419 doi:10.5194/amt-5-603-2012, 2012.

420 Hase, F., Drouin, B. J., Roehl, C. M., Toon, G. C., Wennberg, P. O., Wunch, D.,  
421 Blumenstock, T., Desmet, F., Feist, D. G., Heikkinen, P., De Mazi ère, M.,  
422 Rettinger, M., Robinson, J., Schneider, M., Sherlock, V., Sussmann, R., T é, Y.,  
423 Warneke, T., and Weinzierl, C.: Calibration of sealed HCl cells used for TCCON  
424 instrumental line shape monitoring, *Atmos. Meas. Tech.*, 6, 3527-3537,  
425 doi:10.5194/amt-6-3527-2013, 2013.

426 Hase, F., Blumenstock, T., and Paton-Walsh, C.: Analysis of the instrumental line  
427 shape of high-resolution Fourier transform IR spectrometers with gas cell  
428 measurements and new retrieval software, *Appl. Optics*, 38, 3417–3422, 1999.

429 Kalnay E., Kanamitsu M., Kistler R., et al. (1996) The NCEP/NCAR 40-year  
430 reanalysis project. *Bulletin of the American Meteorological Society*, 77, 437-472.

431 Kurylo, M. J.: Network for the detection of stratospheric change (NDSC), *SPIE*  
432 *Proceedings* 1991, *P. Soc. Photo-Opt. Ins.*, 1491, 168–174, 1991.

433 Kohlhepp, R., Barthlott, S., Blumenstock, T., Hase, H., Kaiser, I., Raffalski, U., and  
434 Ruhnke, R.: Trends of HCl, ClONO<sub>2</sub>, and HF column abundances from  
435 ground-based FTIR measurements in Kiruna (Sweden) in comparison with  
436 KASIMA model calculations, *Atmos. Chem. Phys.*, 11, 4669–4677, 2011  
437 www.atmos-chem-phys.net/11/4669/2011/doi:10.5194/acp-11-4669-2011

438 Messerschmidt, J., Macatangay, R., Notholt, J., Petri, C., Warneke, T., and Weinzierl,  
439 C.: Side by side measurements of CO<sub>2</sub> by ground-based Fourier transform  
440 spectrometry (FTS), *Tellus B*, 62, 749–758, doi:10.1111/j.1600-0889.2010.00491.x  
441 , 2010.

442 Olsen, S. C. and Randerson, J. T.: Differences between surface and column



443 atmospheric CO<sub>2</sub> and implications for carbon cycle research, *J. Geophys.*  
444 *Res.-Atmos.*, 109, D02301, doi:10.1029/2003JD003968, 2004.

445 Schneider, M., Redondas, A., Hase, F., Guirado, C., Blumenstock, T., and Cuevas, E.:  
446 Comparison of ground-based Brewer and FTIR total column O<sub>3</sub> monitoring  
447 techniques, *Atmos. Chem. Phys.*, 8, 5535–5550, doi:10.5194/acp-8-5535-2008,  
448 2008.

449 Rodgers, C. D.: *Inverse methods for atmospheric sounding: Theory and Practice*,  
450 Series on Atmospheric, Oceanic and Planetary Physics, Vol. 2, World Scientific  
451 Publishing Co., Singapore, 2000.

452 Rothman, L. S., Gordon, I. E., Barbe, A., Benner, D. C., Bernath, P. F., Birk, M.,  
453 Boudon, V., Brown, L. R., Campargue, A., Champion, J.-P., Chance, K., Coudert,  
454 L. H., Danaj, V., Devi, V. M., Fally, S., Flaud, J.-M., Gamache, R. R., Goldmanm,  
455 A., Jacquemart, D., Kleiner, I., Lacome, N., Lafferty, W. J., Mandin, J.-Y., Massie,  
456 S. T., Mikhailenko, S. N., Miller, C. E., Moazzen-Ahmadi, N., Naumenko, O. V.,  
457 Nikitin, A. V., Orphal, J., Perevalov, V. I., Perrin, A., Predoi-Cross, A., Rinsland, C.  
458 P., Rotger, M., Šime. cková, M., Smith, M. A. H., Sung, K., Tashkun, S. A.,  
459 Tennyson, J., Toth, R. A., Vandaele, A. C., and Vander Auwera, J.: The Hitran  
460 2008 molecular spectroscopic database, *J. Quant. Spectrosc. Ra.*, 110, 533–572,  
461 2009.

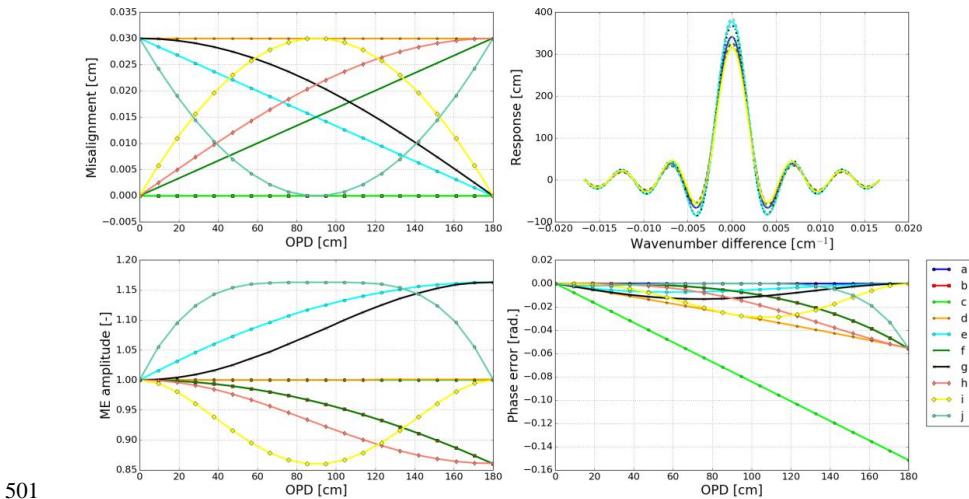
462 Vigouroux, C., De Mazi ère, M., Demoulin, P., Servais, C., Hase, F., Blumenstock, T.,  
463 Kramer, I., Schneider, M., Mellqvist, J., Strandberg, A., Velazco, V., Notholt, J.,  
464 Sussmann, R., Stremme, W., Rockmann, A., Gardiner, T., Coleman, M., and  
465 Woods, P.: Evaluation of tropospheric and stratospheric ozone trends over Western  
466 Europe from ground-based FTIR network observations, *Atmos. Chem. Phys.*, 8,  
467 6865–6886, 2008, <http://www.atmos-chem-phys.net/8/6865/2008/>.

468 Vigouroux, C., Blumenstock, T., Coffey, M., Errera, Q., Garc á, O., Jones, N. B.,  
469 Hannigan, J. W., Hase, F., Liley, B., Mahieu, E., Mellqvist, J., Notholt, J., Palm,  
470 M., Persson, G., Schneider, M., Servais, C., Smale, D., Th ñix, L., and De Mazi ère,  
471 M.: Trends of ozone total columns and vertical distribution from FTIR  
472 observations at eight NDACC stations around the globe, *Atmos. Chem. Phys.*, 15,

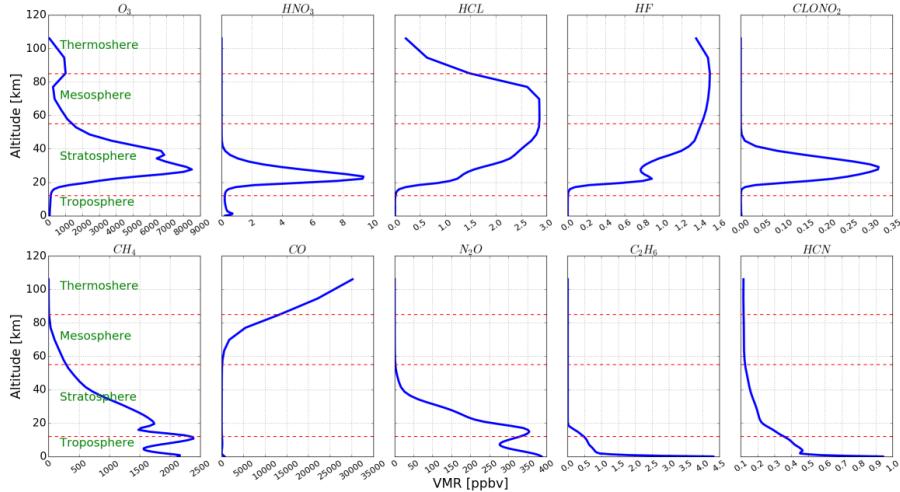


473 2915-2933, doi:10.5194/acp-15-2915-2015, 2015.

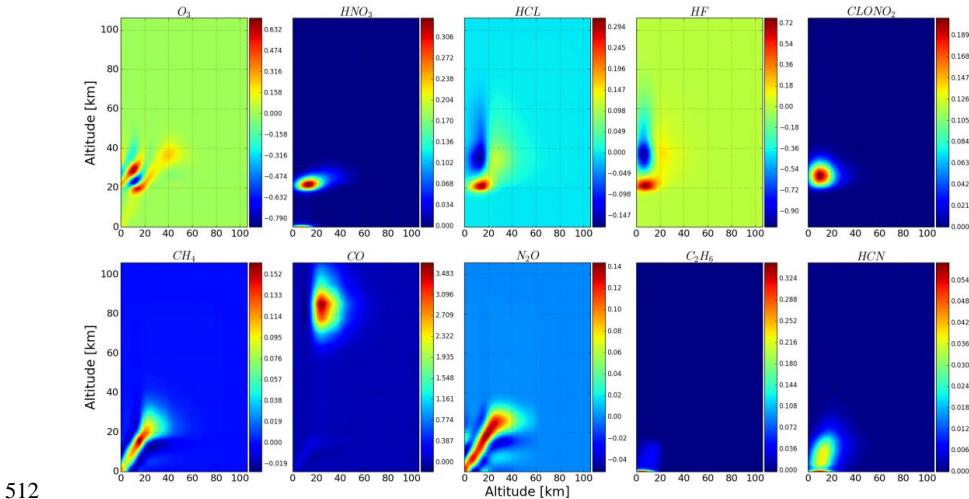
474 475 Washenfelder, R. A.: Column abundances of carbon dioxide and methane retrieved  
from ground-based near-infrared solar spectra, PhD thesis, California Institute of  
Technology, Pasadena, California (available at: <http://thesis.library.caltech.edu>),  
476 2006.


477 478 Wunch, D., Toon, G. C., Wennberg, P. O., Wofsy, S. C., Stephens, B. B., Fischer, M.  
479 L., Uchino, O., Abshire, J. B., Bernath, P., Biraud, S. C., Blavier, J.-F. L., Boone,  
480 C., Bowman, K. P., Browell, E. V., Campos, T., Connor, B. J., Daube, B. C.,  
481 Deutscher, N. M., Diao, M., Elkins, J. W., Gerbig, C., Gottlieb, E., Griffith, D.  
482 W. T., Hurst, D. F., Jiménez, R., Keppel-Aleks, G., Kort, E. A., Macatangay, R.,  
483 Machida, T., Matsueda, H., Moore, F., Morino, I., Park, S., Robinson, J., Roehl, C.  
484 M., Sawa, Y., Sherlock, V., Sweeney, C., Tanaka, T., and Zondlo, M. A.:  
485 Calibration of the Total Carbon Column Observing Network using aircraft profile  
486 data, *Atmos. Meas. Tech.*, 3, 1351–1362, doi:10.5194/amt-3-1351-2010, 2010.

487 488 489 490 Wunch, D., Toon, G. C., Blavier, J.-F. L., Washenfelder, R., Notholt, J., Connor, B. J.,  
Griffith, D. W. T., Sherlock, V., and Wennberg, P. O.: The Total Carbon Column  
Observing Network, *Phil. T. Roy. Soc. A*, 369, 2087–2112, doi:10.1098  
/rsta.2010.0240, 2011.


491 492 493 Wunch, D., Toon G. C., Sherlock V., Deutscher N. M., Liu C., Feist D. G., and  
Wennberg P. O.: The Total Carbon Column Observing Network's GGG2014 Data  
Version. 10.14291/tcccon.ggg2014.documentation.R0/1221662, 2015.

494 495 496 497 498 Sun, Y., Palm, M., Weinzierl, C., Petri, C., Notholt, J., Wang, Y., and Liu, C.:  
Technical note: Sensitivity of instrumental line shape monitoring for the  
ground-based high-resolution FTIR spectrometer with respect to different optical  
attenuators, *Atmos. Meas. Tech.*, 10, 989–997, doi: 10.5194/amt-10-989-2017,  
2017.


499 500 **9 Figs**



501  
 502 Fig.1. Simulated ILS degradation with respect to different types of misalignment. The results are  
 503 derived from ALIGN60. Top left demonstrates different types of misalignment (a to j) used in the  
 504 simulation, top right is the resulting ILS, bottom left is the resulting ME amplitude, and bottom  
 505 right is the resulting PE. Descriptions for the misalignment a to j are listed in Table 1.



506  
 507 Fig.2. Typical profiles of ten NDACC gases. Bottom panels are five tropospheric gases, i.e., CH<sub>4</sub>,  
 508 CO, N<sub>2</sub>O, C<sub>2</sub>H<sub>6</sub>, and HCN. Top panels are five stratospheric gases, i.e., O<sub>3</sub>, HNO<sub>3</sub>, HCl, HF, and  
 509 ClONO<sub>2</sub>. Although the CO concentration above 60 km is much higher than that in the troposphere,  
 510 it is regarded as tropospheric gas because it is an anthropologic pollution gas and shows large  
 511 variation in troposphere.



512

513 Fig.3. Averaging kernel matrices of ten NDACC gases. The deeper the color, the higher the  
 514 retrieval sensitivity. They are deduced from the spectra recorded at Hefei on September 8, 2015  
 515 with an ideal ILS.



516

517 Fig.4 Averaging kernels of ten NDACC gases (color fine lines), and their area scaled by a factor of  
 518 0.2 (black bold line).



519  
 520  
 521

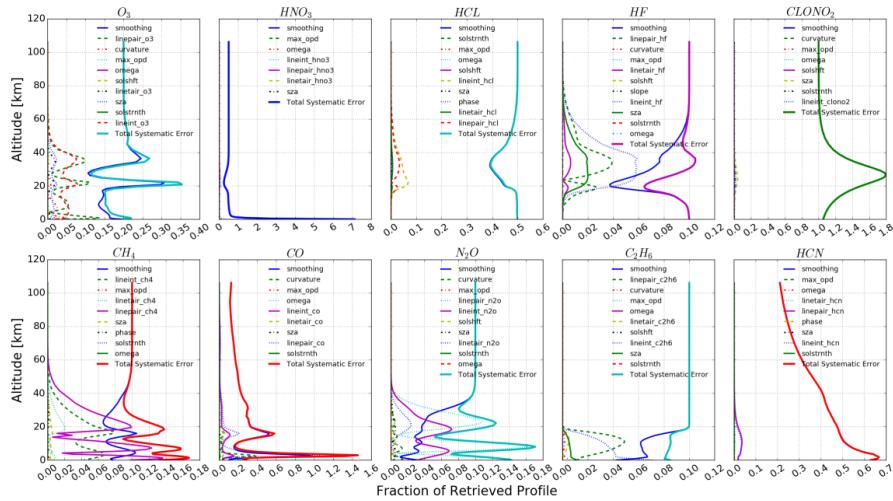
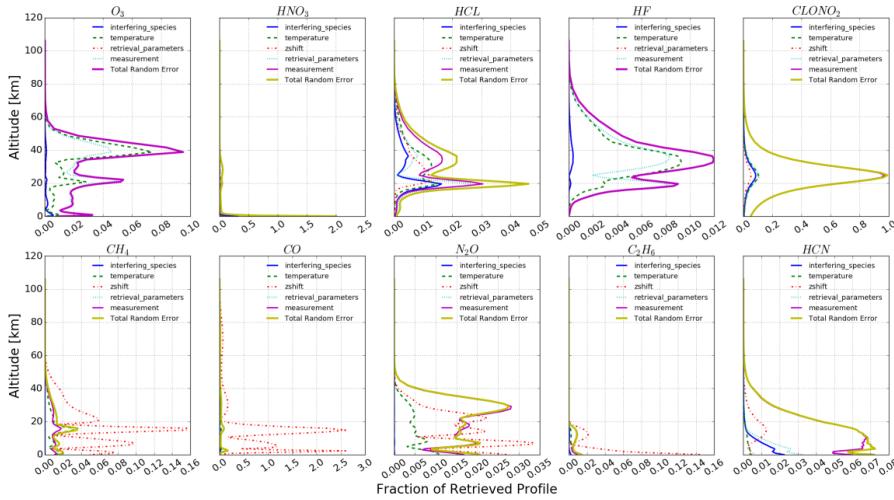
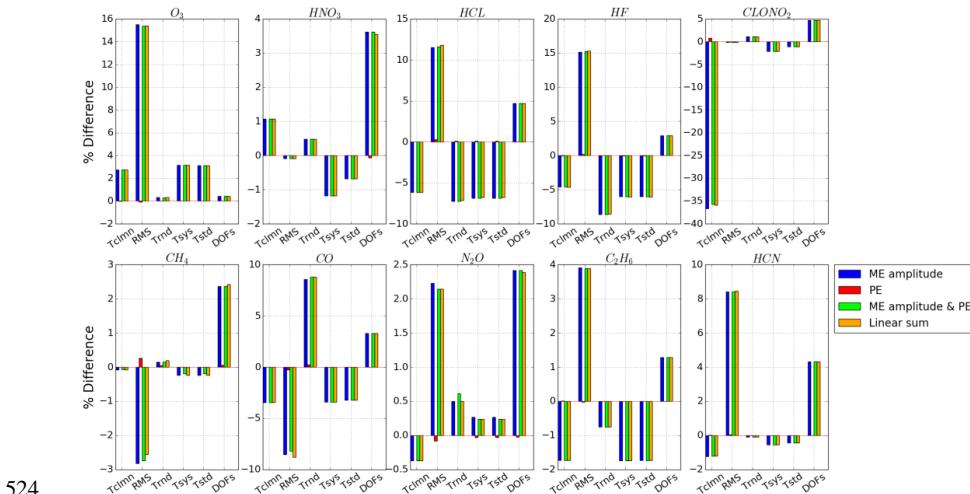
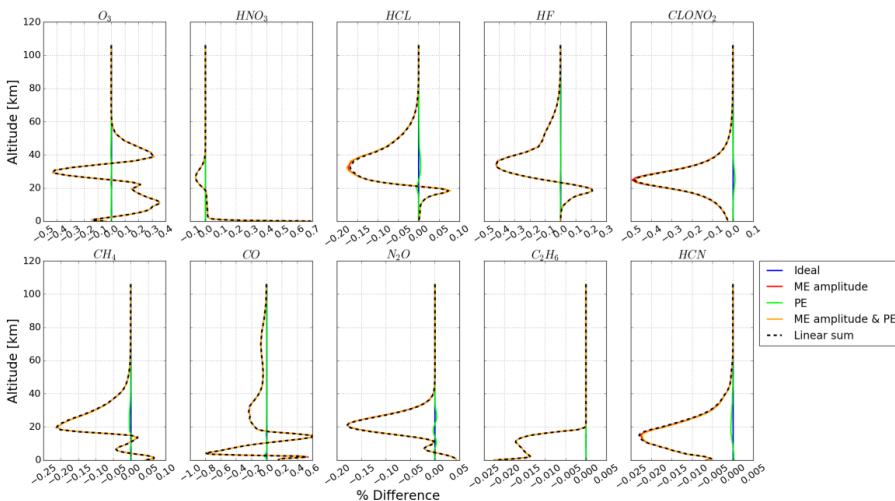
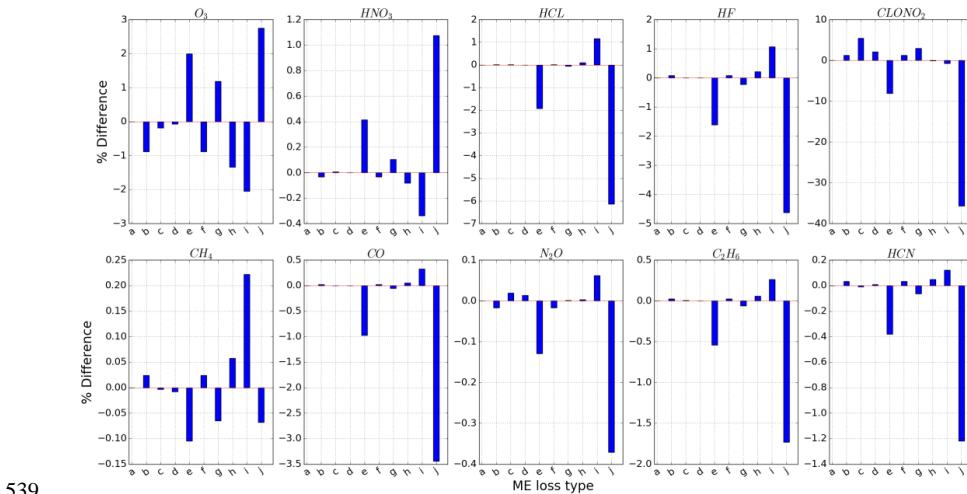



Fig.5. Ground-based FTIR systematic errors for ten NDACC gases retrieval. They are deduced from the spectra used in section 5 with an ideal ILS.

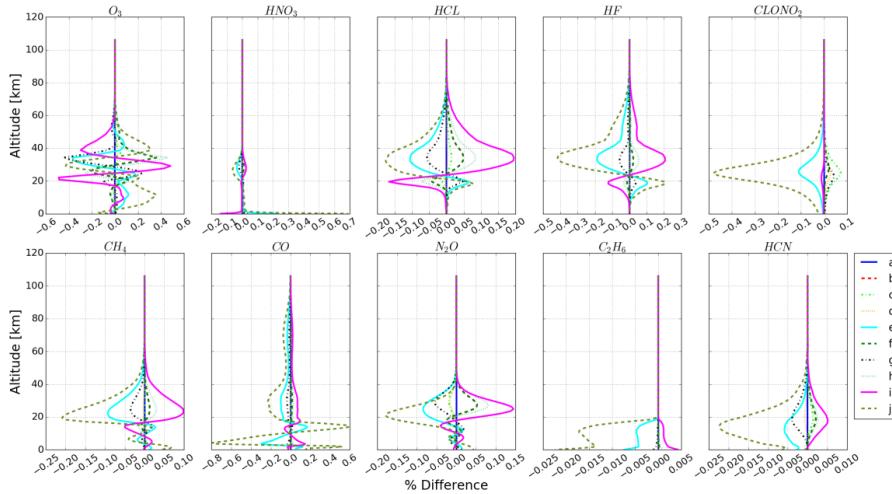
522  
 523



Fig.6. The same as Fig.5 but for random errors.

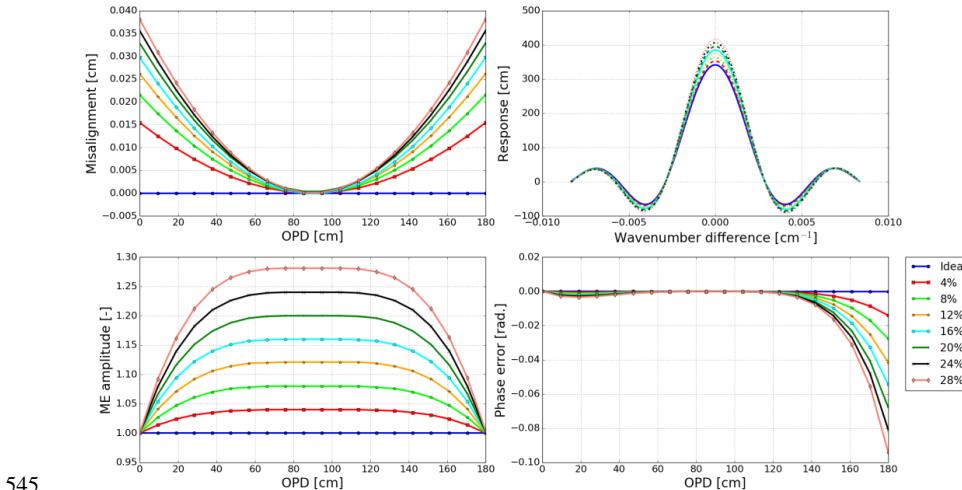


524  
 525 Fig.7. Fractional difference in total column, RMS, total random uncertainty, total systematic  
 526 uncertainty, total uncertainty, and DOFs for misalignment  $j$ . “ME amplitude” represents the ILS  
 527 only taken ME amplitude deviation into account. “PE” represents the ILS only taken PE deviation  
 528 into account. “ME amplitude & PE” represents the ILS taken both ME amplitude and PE  
 529 deviations into account. “Linear sum” represents the fractional difference of each item is linear  
 530 sum of “ME amplitude” and “PE”. The ME amplitude and PE are obtained from ALIGN60 with  
 531 misalignment  $j$  in Fig.1.



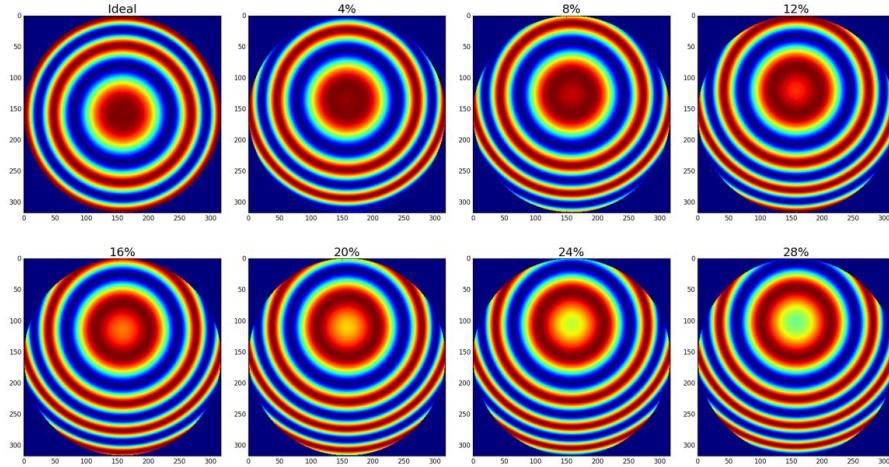

532  
 533 Fig.8. Fractional difference in profile for misalignment  $j$ . “ME amplitude” represents the ILS only  
 534 taken ME amplitude deviation into account. “PE” represents the ILS only taken PE deviation into  
 535 account. “ME amplitude & PE” represents the ILS taken both ME amplitude and PE deviations  
 536 into account. “Linear sum” represents the fractional difference of each item is linear sum of “ME  
 537 amplitude” and “PE”. The ME amplitude and PE are obtained from ALIGN60 with misalignment  $j$   
 538 in Fig.1.




539

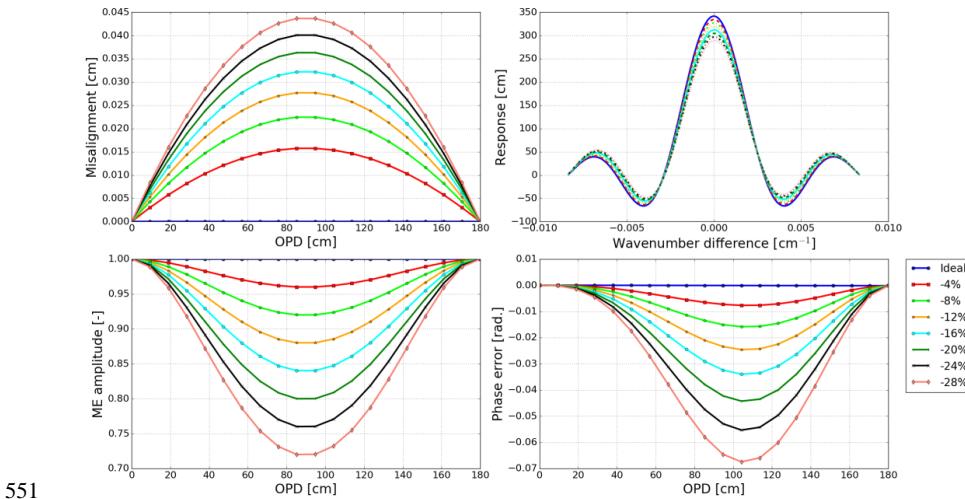
540 Fig.9. Sensitivity of total column to different types of ILS degradation. The ILS  $a$  to  $j$  correspond  
 541 to misalignment  $a$  to  $j$  in Table1.




542

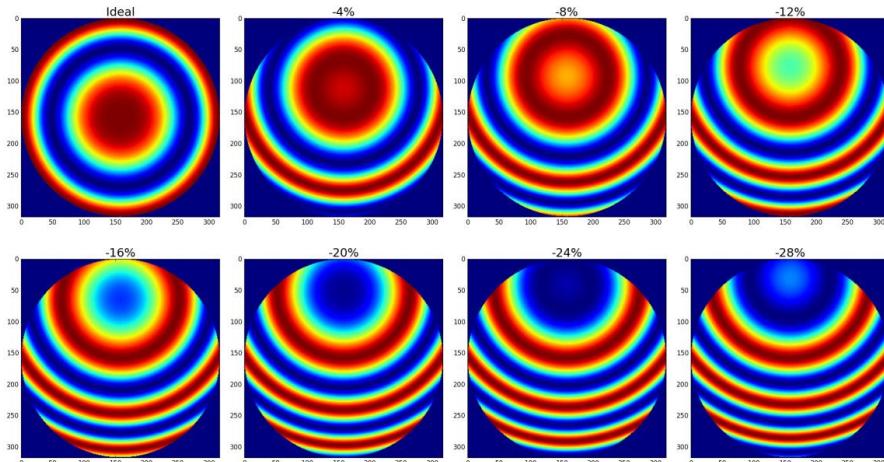
543 Fig.10. Sensitivity of profile to different types of ILS degradation. The ILS  $a$  to  $j$  correspond to  
 544 misalignment  $a$  to  $j$  in Table1.




545

546 Fig.11. Simulated positive ME deviations along with OPD. Top left demonstrates the  
 547 misalignment, top right is the resulting ILS, bottom left is the resulting ME amplitude, and bottom  
 548 right is the resulting PE.




549

550 Fig.12. The Haidinger fringes at maximum OPD (the maximum misalignment position) for Fig. 11

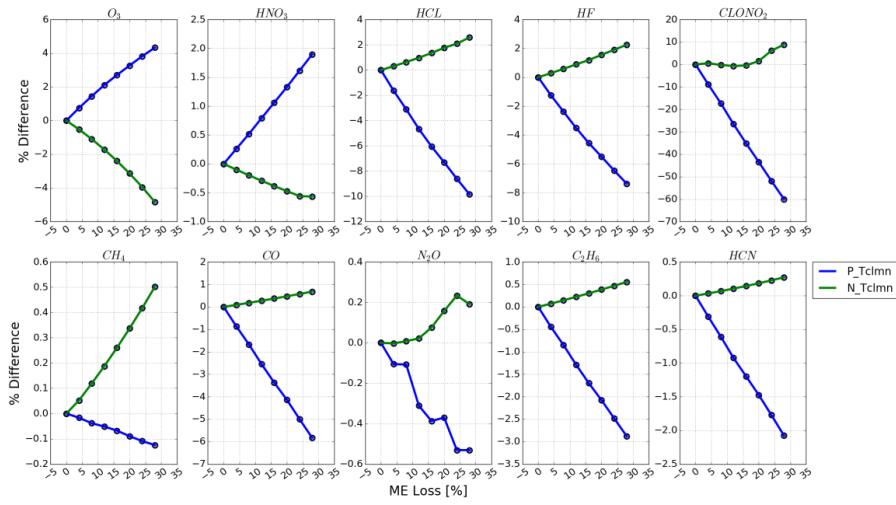


551

552 Fig.13. Simulated negative ME deviations along with OPD. Top left demonstrates the  
 553 misalignment, top right is the resulting ILS, bottom left is the resulting ME amplitude, and bottom  
 554 right is the resulting PE.



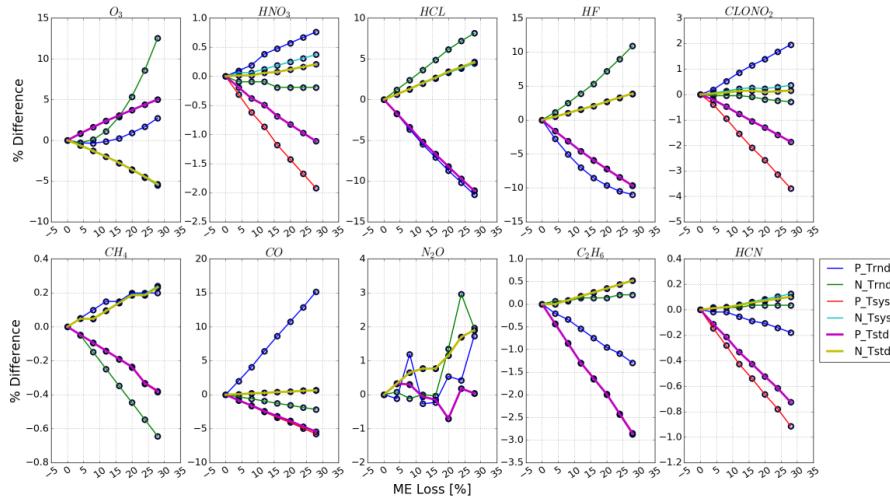
555


556 Fig.14. The Haidinger fringes at 1/2 maximum OPD (the maximum misalignment position) for Fig.  
 557 13

558

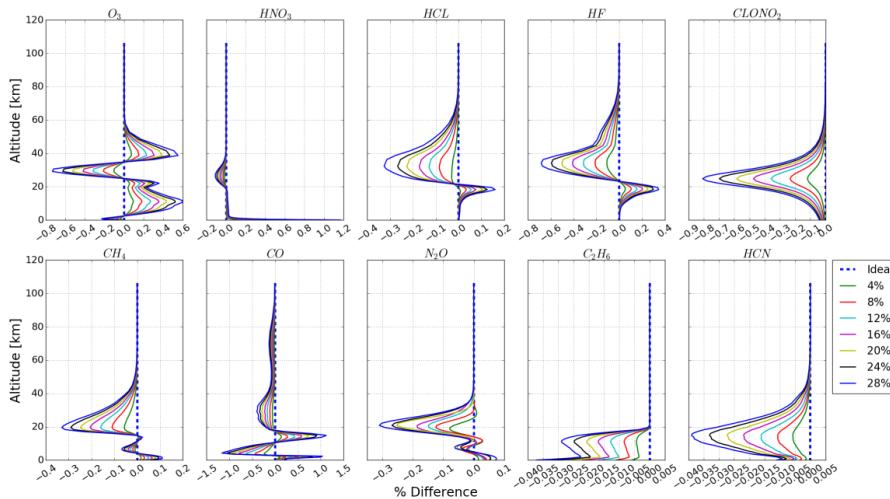


559


560 Fig.15. Sensitivity of total column with respect to ME deviation. "P\_Tclmn" represents the  
 561 sensitivity of total column with respect to positive ME deviation and "N\_Tclmn" represents the  
 562 sensitivity of total column with respect to negative ME deviation.

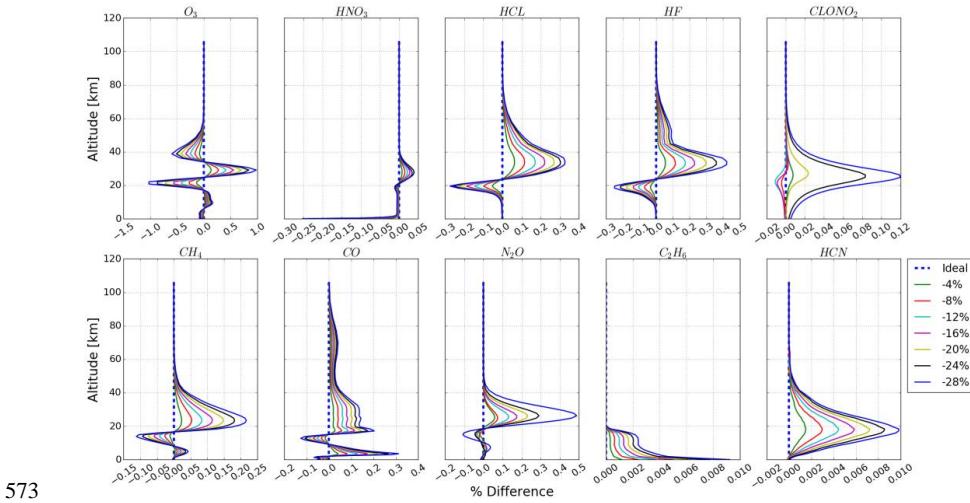


563


564 Fig.16. The same as Fig.15 but for DOFs and fitting RMS. The acronyms in the legend are similar  
 565 to those in Fig.15

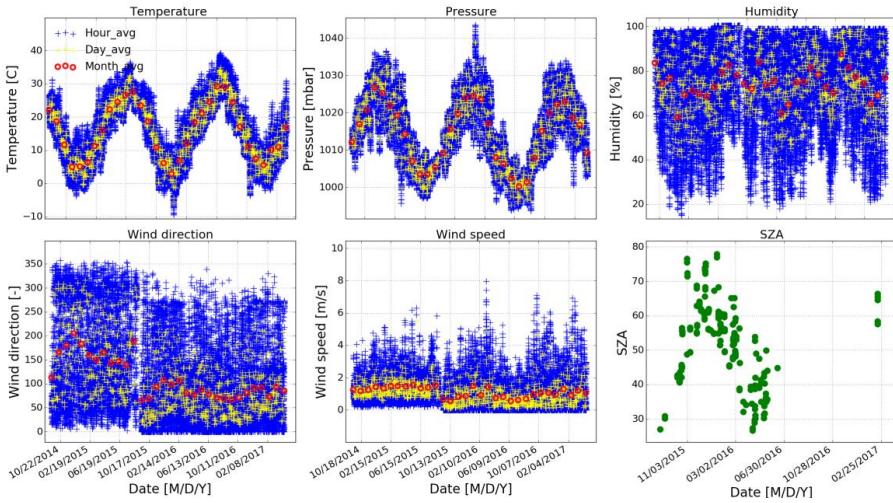





566

567 Fig.17. The same as Fig.15 but for total random uncertainty, total systematic uncertainty and total  
 568 uncertainty. The acronyms in the legend are similar to those in Fig.15. “Trnd”, “Tsys” and “Tstd”  
 569 represent total random uncertainty, total systematic uncertainty and total uncertainty, respectively.

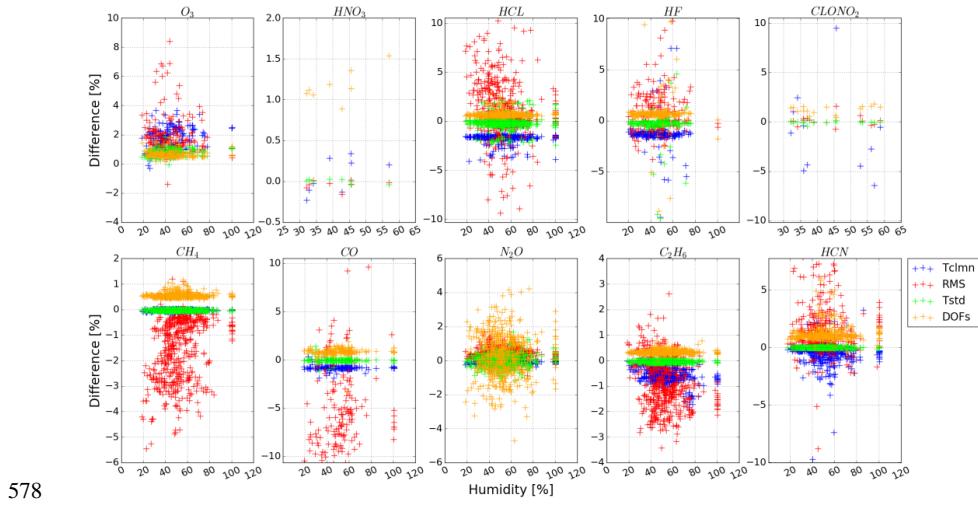



570

571 Fig.18. Sensitivity of profile with respect to ME deviation. “4%” represents the ME amplitude  
 572 deviation is 4%. The nomenclature for other plot labels is straightforward.



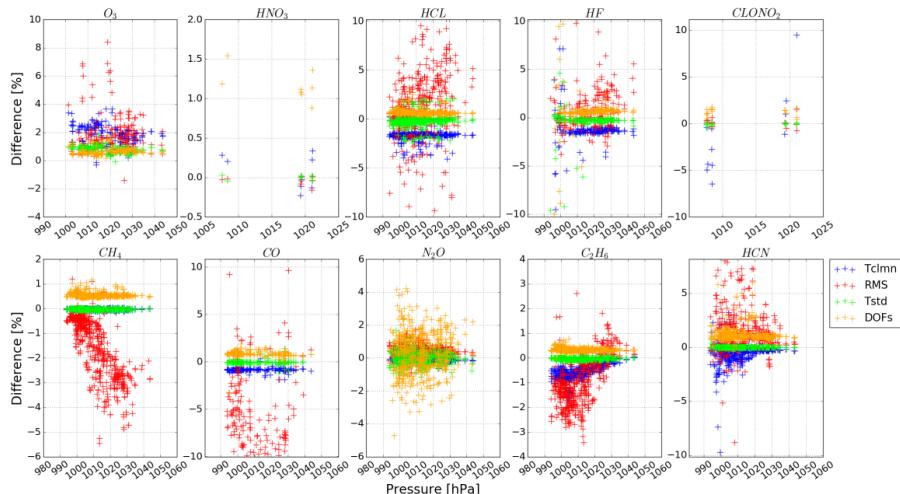
573


574 Fig.19. The same as Fig.18 but for negative ME deviation.



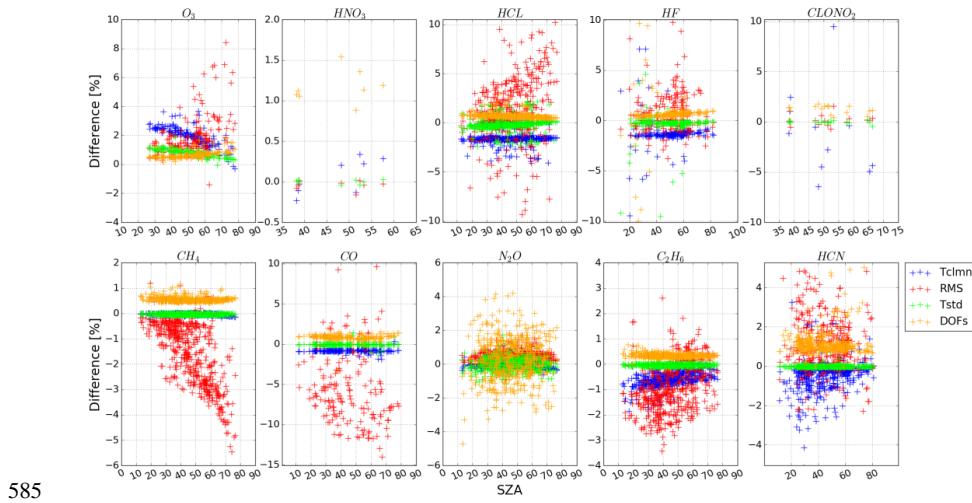
575

576 Fig.20. The meteorological data and SZAs record at Hefei from September 2014 to April 2017.


577 Large span of all these parameters are shown.

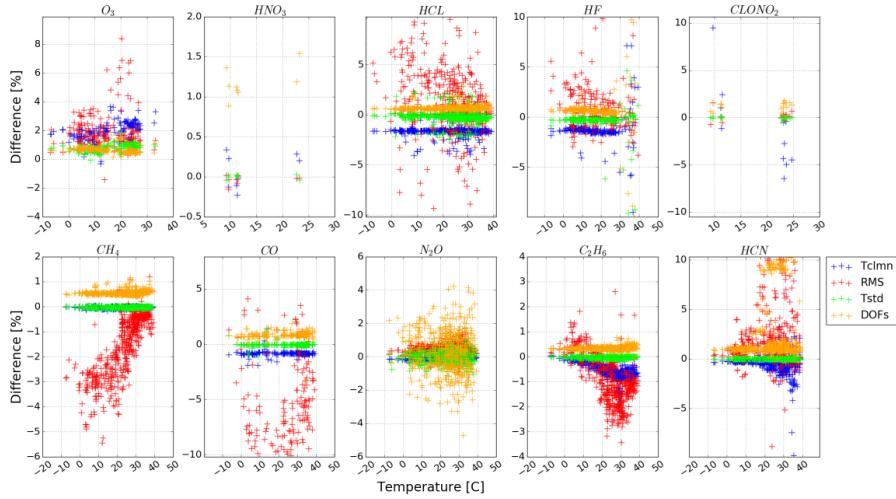


578


579

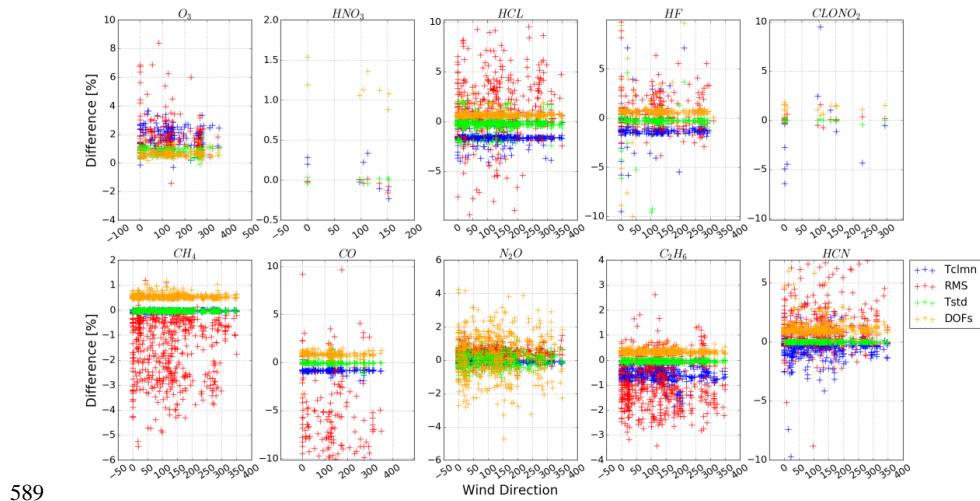
580 Fig.21. Fractional difference in total column, RMS, total uncertainty, and DOFs under different  
 581 humidity conditions from September 2014 to April 2017 for ILS  $j$  with a maximum ME deviation  
 582 of 5%.




583

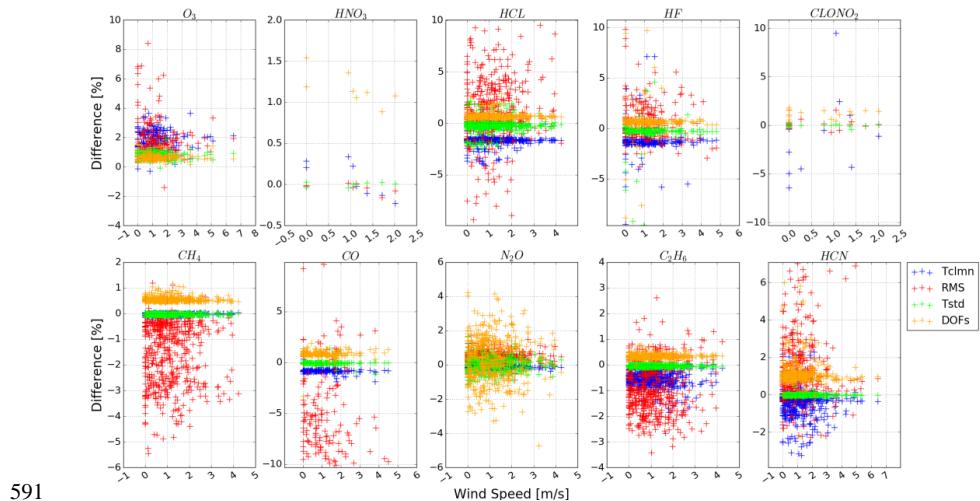
584 Fig.22. The same as Fig.21 but for surface pressure.




585

586 Fig.23. The same as Fig.21 but for SZA.




587

588 Fig.24. The same as Fig.21 but for surface temperature.



589

590 Fig.25. The same as Fig.21 but for wind direction.



591

592 Fig.26. The same as Fig.21 but for wind speed



## 10 Tables

Table 1. Misalignments simulated in the ALIGN60

| Type <sup>a</sup> | Description                                                                                                                                                                                    | Input <sup>b</sup>                                            | Output in maximum                     |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------|
| <i>a</i>          | No misalignment occurs: interferometer in ideal condition                                                                                                                                      | none                                                          | ME amplitude: 1.00<br>PE: 0.000 rad.  |
| <i>b</i>          | Decenter of entrance field stop defining FOV: causes a linear increase in misalignment along OPD                                                                                               | 0.33 [mrad] field stop error                                  | ME amplitude: 0.86<br>PE: -0.056 rad. |
| <i>c</i>          | Decenter of path measuring laser: causes a linear increase in phase error along OPD                                                                                                            | 0.33 [mrad] laser error                                       | ME amplitude: 1.00<br>PE: -0.152 rad. |
| <i>d</i>          | Constant shear: causes a constant shear offset of fixed retro-reflector                                                                                                                        | 0.03 [cm]                                                     | ME amplitude: 1.00<br>PE: -0.056 rad. |
| <i>e</i>          | Decreasing linear shear: causes a linear decrease in misalignment along OPD                                                                                                                    | 0.03-0.00017*OPD [cm]                                         | ME amplitude: 1.16<br>PE: -0.007 rad. |
| <i>f</i>          | Increasing linear shear: causes a linear increase in misalignment along OPD                                                                                                                    | 0.00017*OPD [cm]                                              | ME amplitude: 0.86<br>PE: -0.056 rad. |
| <i>g</i>          | Cosine bending of scanner bar: causes a cosine decrease in misalignment along OPD                                                                                                              | 0.03*cos( $\pi$ *OPD/360) [cm]                                | ME amplitude: 1.16<br>PE: -0.013 rad. |
| <i>h</i>          | Sine bending of scanner bar: causes a sine increase in misalignment along OPD                                                                                                                  | 0.03*sin( $\pi$ *OPD/360) [cm]                                | ME amplitude: 0.86<br>PE: -0.056 rad. |
| <i>i</i>          | Cosine & sine bending of scanner bar: causes a chord increase in misalignment before 1/2 maximum OPD and causes a chord decrease in misalignment after 1/2 maximum OPD                         | 0.073*(sin( $\pi$ *OPD/360)+cos( $\pi$ *OPD/360))-0.073 [cm]  | ME amplitude: 0.86<br>PE: -0.029 rad. |
| <i>j</i>          | Constant shear plus cosine & sine bending of scanner bar: causes a chordal decrease in misalignment before 1/2 maximum OPD and causes a chordal increase in misalignment after 1/2 maximum OPD | -0.073*(sin( $\pi$ *OPD/360)+cos( $\pi$ *OPD/360))+0.103 [cm] | ME amplitude: 1.16<br>PE: -0.056 rad. |

<sup>a</sup> The *b, f, h*, and *i* are referred to increasing misalignment, the *e, g*, and *j* are referred to decreasing misalignment

<sup>b</sup> The input control file (i.e., align60.inp) for ideal condition is attached in the supplement. The input files for other gases can be straight forward.

Table 2. Summary of the retrieval parameters used for all NDACC gases. All micro windows (MW) are given in  $\text{cm}^{-1}$ 

| Gases                                                                  | O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                     | HNO <sub>3</sub>                       | HCl                                                                        | HF                                     | ClONO <sub>2</sub>                                                    | CH <sub>4</sub>                                           | CO                                       | N <sub>2</sub> O                                                           | C <sub>3</sub> H <sub>6</sub>                      | HCN                                                                                |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------|
| Retrieval code                                                         | SIFT4 v 0.9.4.4                                                                                                                                                                                                                                                                                                                                                                                                                                    | SIFT4 v 0.9.4.4                        | SIFT4 v 0.9.4.4                                                            | SIFT4 v 0.9.4.4                        | SIFT4 v 0.9.4.4                                                       | SIFT4 v 0.9.4.4                                           | SIFT4 v 0.9.4.4                          | SIFT4 v 0.9.4.4                                                            | SIFT4 v 0.9.4.4                                    | SIFT4 v 0.9.4.4                                                                    |
| Spectroscopy                                                           | HITRAN2008                                                                                                                                                                                                                                                                                                                                                                                                                                         | HITRAN2008                             | HITRAN2008                                                                 | HITRAN2008                             | HITRAN2008                                                            | HITRAN2008                                                | HITRAN2008                               | HITRAN2008                                                                 | HITRAN2008                                         | HITRAN2008                                                                         |
| P, T profiles                                                          | NCEP                                                                                                                                                                                                                                                                                                                                                                                                                                               | NCEP                                   | NCEP                                                                       | NCEP                                   | NCEP                                                                  | NCEP                                                      | NCEP                                     | NCEP                                                                       | NCEP                                               | NCEP                                                                               |
| A priori profiles for target/interfering gases except H <sub>2</sub> O | WACCM                                                                                                                                                                                                                                                                                                                                                                                                                                              | WACCM                                  | WACCM                                                                      | WACCM                                  | WACCM                                                                 | WACCM                                                     | WACCM                                    | WACCM                                                                      | WACCM                                              | WACCM                                                                              |
| MW for profile retrievals                                              | 1000-1004.5                                                                                                                                                                                                                                                                                                                                                                                                                                        | 867.5-870                              | 2727.73-2727.83                                                            | 4109.4-4110.2                          | 779.85-780.45                                                         | 2613.7-2615.4                                             | 2057.7-2058                              | 2441.8-2444.6                                                              | 2976-2978                                          | 3268-3268.38                                                                       |
| Retrieved interfering gases                                            | H <sub>2</sub> O, CO <sub>2</sub> , C <sub>2</sub> H <sub>6</sub> , O <sub>3</sub> , O <sub>2</sub> , OCS, NH <sub>3</sub>                                                                                                                                                                                                                                                                                                                         | H <sub>2</sub> O, OCS, NH <sub>3</sub> | CH <sub>4</sub> , NO <sub>2</sub> , O <sub>3</sub> , N <sub>2</sub> O, HDO | H <sub>2</sub> O, HDO, CH <sub>4</sub> | O <sub>3</sub> , HNO <sub>3</sub> , H <sub>2</sub> O, CO <sub>2</sub> | CO <sub>2</sub> , NO <sub>2</sub> , H <sub>2</sub> O, HDO | CO <sub>2</sub> , CH <sub>4</sub>        | O <sub>3</sub> , N <sub>2</sub> O, CO <sub>2</sub> , OCS, H <sub>2</sub> O | H <sub>2</sub> O, CH <sub>4</sub> , O <sub>3</sub> | H <sub>2</sub> O, O <sub>3</sub> , C <sub>2</sub> H <sub>6</sub> , CH <sub>4</sub> |
| H <sub>2</sub> O treatment                                             | A priori profile                                                                                                                                                                                                                                                                                                                                                                                                                                   | NCEP                                   | NCEP                                                                       | Scaling retrieval                      | Profile retrieval                                                     | Scaling retrieval                                         | Profile retrieval                        | Profile retrieval                                                          | Profile retrieval                                  | Profile retrieval                                                                  |
|                                                                        | Fit in each WM                                                                                                                                                                                                                                                                                                                                                                                                                                     | Profile retrieval                      | Only                                                                       | Only                                   | Only                                                                  | Only                                                      | Only                                     | Only                                                                       | Only                                               | Only                                                                               |
| SNR for de-weighting                                                   | None                                                                                                                                                                                                                                                                                                                                                                                                                                               | None                                   | 300                                                                        | None                                   | None                                                                  | 500                                                       | 500                                      | None                                                                       | None                                               | None                                                                               |
| Regularization                                                         | S <sub>a</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                     | Diagonal: 20%<br>No correlation        | Diagonal: 50%<br>No correlation                                            | Diagonal: 10%<br>No correlation        | Diagonal: 100%<br>Exponential correlation                             | Diagonal: 10%<br>No correlation                           | Diagonal: 11% ~<br>27%<br>No correlation | Diagonal: 10%<br>No correlation                                            | Diagonal: 10%<br>No correlation                    | Diagonal: 21%<br>~ 79%<br>No correlation                                           |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                                                                            |                                        | HWFM: 8 km                                                            |                                                           |                                          |                                                                            |                                                    |                                                                                    |
| SNR                                                                    | Real SNR                                                                                                                                                                                                                                                                                                                                                                                                                                           | Real SNR                               | Real SNR                                                                   | Real SNR                               | Real SNR                                                              | Real SNR                                                  | Real SNR                                 | Real SNR                                                                   | Real SNR                                           | Real SNR                                                                           |
| ILS                                                                    | ALIGN60                                                                                                                                                                                                                                                                                                                                                                                                                                            | ALIGN60                                | ALIGN60                                                                    | ALIGN60                                | ALIGN60                                                               | ALIGN60                                                   | ALIGN60                                  | ALIGN60                                                                    | ALIGN60                                            | ALIGN60                                                                            |
| Error analysis                                                         | Systematic error:<br>-Smoothing error (smoothing) <sup>a</sup><br>-Errors from parameters not retrieved by sift4 <sup>b</sup> : Background curvature (curvature), Optical path difference (max_opp), Field of view (omega), Solar line strength (solstrth), Background slope (slope), Solar line shift (solshift), Phase (phase), Line temperature broadening (linepair_gas), Line pressure broadening (linepair_gas), Line intensity(lineint_gas) |                                        |                                                                            |                                        |                                                                       |                                                           |                                          |                                                                            |                                                    |                                                                                    |

<sup>a</sup> The bracket shows the corresponding acronym in Figs. 5 and 6

<sup>b</sup> The input uncertainties of all these items are the same and are included into error analysis if they are not retrieved. Otherwise, the corresponding uncertainties wouldn't be included.

-Interference errors: retrieval parameters (retrieval\_parameters), interfering species (interfering\_species)

-Measurement error (measurement)

-Errors from parameters not retrieved by sift4<sup>b</sup>: Temperature (temperature), Zero level (zshift)



Table 3. Altitude ranges with sensitivity larger than 0.5 for all NDACC gases

| Items    | O <sub>3</sub> | HNO <sub>3</sub> | HCl     | HF    | ClONO <sub>2</sub> | CH <sub>4</sub> | CO     | N <sub>2</sub> O | C <sub>2</sub> H <sub>6</sub> | HCN    |
|----------|----------------|------------------|---------|-------|--------------------|-----------------|--------|------------------|-------------------------------|--------|
| Altitude | Ground         | 17 - 28          | 18 - 42 | 18-44 | 20 - 28            | Ground          | Ground | Ground           | Ground                        | 4.5-18 |
| ranges   | - 44           |                  |         |       |                    | - 31            | - 27   | - 31             | - 13.5                        |        |
| (km)     |                |                  |         |       |                    |                 |        |                  |                               |        |
| DOFs     | 5.2            | 1.4              | 1.5     | 1.3   | 0.55               | 3.5             | 3.8    | 4.0              | 1.2                           | 1.1    |



Table 4. The dominant sources of systematic errors and random errors for all NDACC gases

| Items            | O <sub>3</sub>                                            | HNO <sub>3</sub>                                                          | HCl                                                           | HF                                                        | ClONO <sub>2</sub>                                        | CH <sub>4</sub>                                           | CO                                                        | N <sub>2</sub> O                                          | C <sub>2</sub> H <sub>6</sub>                             | HCN                                                       |
|------------------|-----------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|
| Systematic error | smoothing error, line intensity, line pressure broadening | smoothing error                                                           | smoothing error, SZA line intensity, line pressure broadening | smoothing error, line pressure broadening, line intensity | smoothing error, line pressure broadening, line intensity | smoothing error, line pressure broadening, line curvature | smoothing error, line pressure broadening, line intensity |
| Random error     | measurement error, temperature, t error                   | measurement error, retrieval parameters, interfering species, temperature | measurement error, temperature, t error                       | measurement error, temperature                            | measurement error, temperature                            | zero level, t error, temperature                          | zero level, t error, temperature                          | zero level, t error, temperature                          | zero level, t error, temperature                          | zero level, t error, temperature                          |
|                  |                                                           |                                                                           |                                                               |                                                           |                                                           | measurement error, temperature                            |
|                  |                                                           |                                                                           |                                                               |                                                           |                                                           | zero level, t error, temperature                          |



Table 5. Recommendation for suppressing fractional difference in total column for ClONO<sub>2</sub> and other NDACC

gases within 10% and 1%, respectively

| Items       | O <sub>3</sub> | HNO <sub>3</sub> | HCl  | HF   | ClONO <sub>2</sub> | CH <sub>4</sub> | CO  | N <sub>2</sub> O | C <sub>2</sub> H <sub>6</sub> | HCN  |
|-------------|----------------|------------------|------|------|--------------------|-----------------|-----|------------------|-------------------------------|------|
| Positive ME | < 6%           | <15%             | <5%  | <5%  | <5%                | *               | <5% | *                | < 9%                          | <13% |
| Negative ME | < 6%           | *                | <12% | <12% | *                  | *               | *   | *                | *                             | *    |

\*The influence on ClONO<sub>2</sub> is less than 10% and on all other NDACC gases are less than 1% even the ILS degrade by an excessively large of 28%, and thus can normally be regarded as negligible.